Erythropoietin reduces neuronal cell death and hyperalgesia induced by peripheral inflammatory pain in neonatal rats
نویسندگان
چکیده
Painful stimuli during neonatal stage may affect brain development and contribute to abnormal behaviors in adulthood. Very few specific therapies are available for this developmental disorder. A better understanding of the mechanisms and consequences of painful stimuli during the neonatal period is essential for the development of effective therapies. In this study, we examined brain reactions in a neonatal rat model of peripheral inflammatory pain. We focused on the inflammatory insult-induced brain responses and delayed changes in behavior and pain sensation. Postnatal day 3 pups received formalin injections into the paws once a day for 3 days. The insult induced dysregulation of several inflammatory factors in the brain and caused selective neuronal cell death in the cortex, hippocampus and hypothalamus. On postnatal day 21, rats that received the inflammatory nociceptive insult exhibited increased local cerebral blood flow in the somatosensory cortex, hyperalgesia, and decreased exploratory behaviors. Based on these observations, we tested recombinant human erythropoietin (rhEPO) as a potential treatment to prevent the inflammatory pain-induced changes. rhEPO treatment (5,000 U/kg/day, i.p.), coupled to formalin injections, ameliorated neuronal cell death and normalized the inflammatory response. Rats that received formalin plus rhEPO exhibited normal levels of cerebral blood flow, pain sensitivity and exploratory behavior. Treatment with rhEPO also restored normal brain and body weights that were reduced in the formalin group. These data suggest that severe inflammatory pain has adverse effects on brain development and rhEPO may be a possible therapy for the prevention and treatment of this developmental disorder.
منابع مشابه
Nicotinomid Adenin Dinucleotide Phosphate-Diaphorase (NADPH-d) Activity and CB-28 kDa Immunoreactivity in Spinal Neurons of Neonatal Rats after a Peripheral Nerve Lesion
Our previous studies have shown that median and ulnar nerve lesion induced calbindin (CB) immunoreactivity in some injured motoneurons in developing rats. Motoneuron death induced by sciatic nerve transection in neonatal rats has been related to induction of neuronal isoform of nitric oxide synthase (nNOS). The present study investigated whether expression of CB and nicotinomid adenin dinucleot...
متن کاملThymus caramanicus jalas extract reduces serum blood glucose, ameliorates thermal hyperalgesia and motor deficit induced by diabetes in rats
Introduction: Uncontrolled diabetes mellitus could lead to neuropathy in central and peripheral nerve tissues and one of its main signs can be hyperalgesia and motor coordination defect. Due to the blood glucose lowering effect of Thymus species and the presence of polyphenolic compounds with high antioxidant capacity, in this study the effect of Thymus caramanicus jalas extract was investig...
متن کاملThe effect of nimesulide on CoxII expression in central and peripheral immune cells (microglia and macrophage) in a rat model of neuropathic pain
Introduction: Neuropathic pain may be due to a primary insult to the peripheral or central nervous system. In this situation, Hyperalgesia and Allodynia are the results of prostaglandins and cytokines release in the spinal cord. It seems that immune cells play an importat role in the induction and maintenance of chronic pain. Compared to selective CoxII inhibitors, nimesulide, a highly select...
متن کاملErythropoietin Selectively Attenuates Cytokine Production and Inflammation in Cerebral Ischemia by Targeting Neuronal Apoptosis
Ischemic brain injury resulting from stroke arises from primary neuronal losses and by inflammatory responses. Previous studies suggest that erythropoietin (EPO) attenuates both processes. Although EPO is clearly antiapoptotic for neurons after experimental stroke, it is unknown whether EPO also directly modulates EPO receptor (EPO-R)-expressing glia, microglia, and other inflammatory cells. In...
متن کاملGhrelin Exerts Analgesic Effects through Modulation of IL-10 and TGF-β Levels in a Rat Model of Inflammatory Pain
Background: Ghrelin is a peptide with attenuating effect on inflammatory pain. Both anti- and pro-inflammatory mediators have a role in the nociception and development of pain and hyperalgesia. IL-10 and TGF-β are anti-inflammatory cytokines and inhibit the expression of pro-inflammatory cytokines related to peripheral and central inflammatory pain. In this study, the effects of i.p. injec...
متن کامل